3p^2+14p+12=0

Simple and best practice solution for 3p^2+14p+12=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3p^2+14p+12=0 equation:


Simplifying
3p2 + 14p + 12 = 0

Reorder the terms:
12 + 14p + 3p2 = 0

Solving
12 + 14p + 3p2 = 0

Solving for variable 'p'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
4 + 4.666666667p + p2 = 0

Move the constant term to the right:

Add '-4' to each side of the equation.
4 + 4.666666667p + -4 + p2 = 0 + -4

Reorder the terms:
4 + -4 + 4.666666667p + p2 = 0 + -4

Combine like terms: 4 + -4 = 0
0 + 4.666666667p + p2 = 0 + -4
4.666666667p + p2 = 0 + -4

Combine like terms: 0 + -4 = -4
4.666666667p + p2 = -4

The p term is 4.666666667p.  Take half its coefficient (2.333333334).
Square it (5.444444448) and add it to both sides.

Add '5.444444448' to each side of the equation.
4.666666667p + 5.444444448 + p2 = -4 + 5.444444448

Reorder the terms:
5.444444448 + 4.666666667p + p2 = -4 + 5.444444448

Combine like terms: -4 + 5.444444448 = 1.444444448
5.444444448 + 4.666666667p + p2 = 1.444444448

Factor a perfect square on the left side:
(p + 2.333333334)(p + 2.333333334) = 1.444444448

Calculate the square root of the right side: 1.201850427

Break this problem into two subproblems by setting 
(p + 2.333333334) equal to 1.201850427 and -1.201850427.

Subproblem 1

p + 2.333333334 = 1.201850427 Simplifying p + 2.333333334 = 1.201850427 Reorder the terms: 2.333333334 + p = 1.201850427 Solving 2.333333334 + p = 1.201850427 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-2.333333334' to each side of the equation. 2.333333334 + -2.333333334 + p = 1.201850427 + -2.333333334 Combine like terms: 2.333333334 + -2.333333334 = 0.000000000 0.000000000 + p = 1.201850427 + -2.333333334 p = 1.201850427 + -2.333333334 Combine like terms: 1.201850427 + -2.333333334 = -1.131482907 p = -1.131482907 Simplifying p = -1.131482907

Subproblem 2

p + 2.333333334 = -1.201850427 Simplifying p + 2.333333334 = -1.201850427 Reorder the terms: 2.333333334 + p = -1.201850427 Solving 2.333333334 + p = -1.201850427 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-2.333333334' to each side of the equation. 2.333333334 + -2.333333334 + p = -1.201850427 + -2.333333334 Combine like terms: 2.333333334 + -2.333333334 = 0.000000000 0.000000000 + p = -1.201850427 + -2.333333334 p = -1.201850427 + -2.333333334 Combine like terms: -1.201850427 + -2.333333334 = -3.535183761 p = -3.535183761 Simplifying p = -3.535183761

Solution

The solution to the problem is based on the solutions from the subproblems. p = {-1.131482907, -3.535183761}

See similar equations:

| -4=-7+w | | 8-5x=8-2x | | -6(12-15)+2x^3= | | 2w+2.5=0.5w | | 5x+2-3x=14 | | 2x^2+23x-8=0 | | 3x+(2x+6)= | | 9(z-6)= | | 18x+2=x+8+x-6 | | 17(x+3)=6(x+7)+31 | | 3x(-4)+(52+-4*2)-(-9.82)= | | 8(q+9)= | | -4(5p+4)-44=3(2p+6) | | 4x-11y=3x+7 | | -8(y+4)=-7y-5 | | -4(5t-4)+8t=5t-2 | | 6n-7+8n+2=23 | | 3-7n+5n=32-67 | | Cos(x)-2x=0 | | -53+10y+6=5(3y-4)-7 | | 12(y+4)=4(2y+1)+4y | | 3x(-4)+(52+-4*2)= | | 8a+6-8a+7= | | 30=3(y+4)-6y | | b^2-10b-45=0 | | -2(5t-5)+6t=5t-6 | | x^1=.04 | | -5(y+6)(-y-2)=0 | | 3*(-4)+(52+-4*2)= | | -12c-3(-5c+12)=15 | | -5x+4y=65 | | 8(4-3x)=4(3-5x)+4x |

Equations solver categories